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A method of time-dependent conformal mapping is introduced to simplify the power- 
series solution procedure for time- and space-periodic standing waves in deep water. 
A solution has been found to 25th order in the wave amplitude. The values of certain 
coefficients are determined by the requirement that secular terms must be suppressed. 
Because the series for the wave profile is not always uniformly convergent, Pad6 
approximants are used for summation. For very high waves, the slope of the surface 
has at  least two relative maxima. The singularity structure of the solution is also 
discussed. 

1. Introduction 
Standing-gravity-wave problems are more difficult to analyse than those of steady 

wave motions, such as the classical Stokes progressive wave, because of the complica- 
tions introduced by their time dependence. Nevertheless, approximate small- 
amplitude expansions have been found for many cases of interest: two- and three- 
dimensional waves on a fluid of finite and infinite depth; composite waves of more than 
one fundamental frequency; interfacial waves in multi-layered fluids; and effects due 
to surface tension. A survey of these and other standing-wave problems may be found 
in the review articles of Wehausen & Laitone (1960) and Wehausen (1965). 

In  the present work we take a fresh look at  the most fundamental standing-wave 
problem: the two-dimensional, simply periodic irrotational motion of a perfect fluid in 
an infinitely deep and laterally unbounded ocean. In  contrast to the progressive-wave 
case, an existence proof for standing waves has not yet been found. In  addition, there 
remain doubts as to the form of the highest standing-wave profile. 

Finite-amplitude deep-water standing waves were first investigated by Rayleigh 
(1915) who obtained a third-order solution in an assumed small-amplitude expansion. 
Two important features of deep-water stationary waves become apparent in the first 
few orders: the maximum elevation of the surface above the mean water level exceeds 
the maximum depression below it, and the frequency of the wave motion is decreased 
by an increase in wave amplitude. The latter is not true for shallow water standing 
waves when the water depth/wavelength ratio is less than 0.17; here the frequency 
increases with amplitude (Tadjbakhsh & Keller 1960; Fultz 1962). 

In  the most ambitious effort to date, Penney & Price (1952) carried the perturbation 
expansion to the fifth order. They found that there is no time during the period of the 

t Now at Exxon Research Center, Linden, New Jersey. 
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wave motion when the free surface is perfectly flat (a fourth-order effect). Even more 
surprising, they concluded that the crest of the highest wave has a right-angled nodal 
form in contrast with that of the greatest stable travelling wave, for which the nodal 
angle is 120”. In showing this, it was necessary to assume, first of all, that the crest is 
pointed and, secondly, that the pressure is expandable in a Taylor series about the 
crest. By further arguing that the acceleration of the crest could not exceed g in magni- 
tude, they found a maximum wave-height/length ratio of 0.218 with a corresponding 
frequency of 0.949 times the frequency of the infinitesimal wave theory. These pre- 
dictions were later confirmed experimentally by Taylor (1 953) who, while he doubted 
some of the underlying assumptions of Penney & Price’s theoretical analysis, never- 
theless believed their results to be correct. Experiments by Edge & Walters (1964) also 
showed a highest wave crest of nearly 90”. 

A recent study by Saffman & Yuen (1979) has provided numerical confirmation of 
Taylor’s experimental observations. Their technique computed the time evolution of 
a given initial state which did not recur exactly after one ‘period’. Thus the waves 
generated are not the ‘pure’ standing waves discussed here. 

In the theoretical studies mentioned above Eulerian co-ordinates were used to 
describe the fluid motion; i.e. the independent variables are the physical space co- 
ordinates and time. The feasibility of using a Lagrangian description has been 
demonstrated by Sekerzh-Zen’kovich (1947), Chabert-D’Hihres (1960), and others. 
In  this co-ordinate system, the free surface may be taken to be a straight line, thereby 
avoiding problems associated with the satisfaction of boundary conditions on free, or 
unknown, boundaries. One aspect of the Lagrangian method makes i t  less desirable 
however: the field equations, i.e. the continuity equation and irrotationality condition, 
are nonlinear and lead, in practice, to the solution of Poisson’s equation at  each order 
in the perturbation expansion. We prefer a third method which is a direct adaptation 
of the conformal mapping methods described in Whitney (1971) and Grant (1973b). 
Here the flow region in the z plane is mapped conformally to a fixed lower half-plane, 
say 5, by a time-dependent mapping z(6,  t ) .  Since the Cauchy-Riemann field equations 
are invariant under a conformal mapping, the problem then becomes one of finding the 
mapping z(5,  t ) ,  the complex velocity potential, and the complex velocity, that are 
analytic functions in g under appropriate boundary conditions applied on Im C = 0. 
In  a sense this method combines the best features of the Eulerian and Lagrangian 
methods. 

In the present work we carry the small-amplitude expansion for deep-water standing 
waves to 25th order, using the computer to perform the laborious arithmetic. Our 
purpose in doing this is to improve upon the accuracy of previous work and to investi- 
gate the nature of limiting singularities. While the solution technique is, by necessity, 
different, the analysis of the perturbation expansion closely follows the work of 
Schwartz (1974) who performed a computer extension of Stokes’ progressive wave. 
In  5 2, the perturbation solution and recurrence relations are presented and a solution 
algorithm for them is developed. In 5 3, the convergence of the series is analysed; it is 
analytically continued by Pad6 fractions ; the structure of singularities is determined; 
and wave profiles and frequencies are calculated. 

Preliminary results of the present work (Schwartz & Whitney 1977) were presented 
at the Sixth Australasian Hydraulics and Fluid Mechanics Conference. 
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z plane y l  

;; 
FIGURE 1. One wave cycle in the physical and transformed planes. 

2. Formulation 
Stokes (1880) showed that the algebraic manipulations in the series solution for the 

progressive wave can be simplified considerably by treating the complex potential as 
the independent, rather than the dependent, variable. The free surface is then mapped 
onto the velocity potential axis and the problem reduces to  one that is quadratically, 
rather than exponentially, nonlinear. We seek a similar simplification for the standing 
wave. 

The region of the physical or z plane occupied by the fluid at  each instant of time t 
is mapped onto the lower half 6 plane according to the transformation 

z = z+ iy  = z (5 , t ;  E ) ,  (2.1) 

where 8 is a parameter that subsequently will be identified with the wave height and 
6 = l +  iv. The free surface corresponds to 7 = 0 (see figure 1). We introduce the usual 
complex velocity potential f = q5 + i$ and the complex velocity w = d f /dz  = u - iv .  
Henceforth, capital letters will denote the direct functional dependence of these 
quantities on 6 and t, i.e. 

(2.2) 
P(6, t )  = @ + iY = f [ZK, t ) ,  t ] ,  
W(6 , t )  = u-iv = w[z(C,t ) , t ] .  

The variables W, F and z are related by 

where subscripts signify partial differentiation. 
The kinematic boundary condition states that the normal component of fluid 

velocity (U, V )  of a particle occupying a point on the surface is equal to the normal 
component of the surface velocity (xt, yt) at that point. On the free surface, (xc, yc) is a 
tangent vector; hence n = ( - y,., xE) is a vector normal to the surface. Thus 

(V, V).n = (q ,yt ) .n  on 71 = 0 
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or, in compact form, 
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Im{Fc-zcZt} = 0 on r] = 0, 

where use has been made of ( 2 . 3 )  and the bar signifies complex conjugation. 

equation 
The pressure p at any point in the water, in the z plane, is given by the Bernoulli 

(P-Po)IP = - d t - W - C ? Y .  ( 2 . 5 )  

Here p is the density, g the acceleration of gravity, and po  the atmospheric pressure, 
which may, without loss of generality, be set equal to zero. On the free surface, the 
dynamic boundary condition states that p = po .  Thus 

q5t++LG+gy = 0 ( 2 . 6 )  

on the free surface. We require equation ( 2 . 6 )  in terms of [-plane variables evaluated on 
the free surface r] = 0. Only the velocity potential term involves special treatment. 
From ( 2 . 2 )  we have 

4 =ft+f,zt = ft+wzt. 

By substituting the real part of this expression into ( 2 . 6 ) )  the dynamic boundary 
condition becomes 

@,+$W~+gy-Re(Wz,} = 0 on r ]  = 0. ( 2 . 7 )  

Additional details of this transformation may be found in the paper by Whitney (197 1). 
A similar mapping was used by Grant (1973b). 

Proceeding now to dimensionless variables, we choose as a characteristic length the 
wavelength h and as a characteristic time the unknown period T .  Let 

k =  2 n l h  and w =  2 n l T  

be the wavenumber and frequency for the standing-wave motion. We define the 
dimensionless variables 

(2.8) 
k2 k 

x"=kz ,  t = w t ,  P = - F ,  V = - W .  
0 w 

We make the substitutions indicated by ( 2 . 8 )  in ( 2 . 3 )  and the surface conditions ( 2 . 4 )  
and ( 2 . 7 ) .  After dropping the tildes, ( 2 . 3 )  and ( 2 . 4 )  remain unchanged while ( 2 . 7 )  
becomes 

@,+$W~+Sy-Re(Wz,} = 0 on r] = 0, ( 2 . 9 )  

where the frequency parameter S is defined as 

S = qk/w2.  (2.10) 

If the wavenumber k is considered to be fixed, then the frequency o, and hence S,  will 
have to be determined as one of the unknowns of the problem. 

The dependent functions z, F, and W are required to be analytic in y and t in the 
lower half-plane. The depth of the water is assumed to be infinite; consequently we 
require 

2 - [ ,  W - 0  as r]+-oo (2.11) 
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to ensure that the disturbances vanish far beneath the surface. The analytic and 
periodic requirements, together with (2.11), imply that the functions may be repre- 
sented by Fourier series of the form 

(2.12a) 
m 

z = g+i x ape-"c, 
p = o  

m 

p=o 

m 

p=o  

W = i x bpe-iPc, 

F = cpe-iPc, 

(2.12 b) 

(2.12c) 

where we have chosen the 7 axis to be a line of symmetry. Inserting the expansions 
(2.12) into (2.3) and setting coefficients of each harmonic equal to zero readily yields 
b, = 0 and 

Here we introduce the convention that sums where the lower limit exceeds the upper 
are taken to be identically equal to zero, Similarly, the kinematic surface 
becomes 

m 

j = O  
ak-pcp+Hp I: [ jajub+j+(p+j)a,+,u;]  = 0, p = 0, 1 ,2 , . . . ,  

condition 

(2.14) 

where the factor Hp is defined by 
if p = O  

1 if p > O  
H p =  (' 

and the primes signify time differentiation, Finally, the dynamic condition gives 

(2.15) 

The required solution has the property that when e, the wave height, is very small 
the surface profile is simply periodic in space and time with frequency and wavenumber 
both equal to 2n. That is 

y = ecosx cost+O(e2), (2.16) 

where analytic dependence on e is also assumed and we have arbitrarily specified that 
x = 0 corresponds to a crest when t = 0. Equation (2.16) is compatible with ( 2 . 1 2 ~ )  
only if a, is O ( E )  and all other ap are o(6) .  The quadratic sums in (2.13)-(2.15) are all 
O(e2); consequently b, and c1 are also O(e) .  Finally, combining (2.14) and (2.15) with 
p = 1 shows that S must be 1 to leading order. Calculation of the first few orders in an 
assumed e expansion quickly reveals that it is sufficient to assume a Stokes-type 
expansion ; that is 

ap = x a p n  ep+2n, ( 2 . 1 7 ~ )  
m 

n-0 

(2.17b) 

(2.17 c) 
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and 
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(2.17 d) 

Here u, are constants to be determined and the doubly subscripted elements are 
periodic functions oft.  Note that a,, y,, and Po, are all zero. 

Introducing the expansions (2.17) into the system (2.13)-(2.15) and equating 
coefficients of each power of 8 ,  we obtain 

(2.18 b )  

Herep and n assume non-negative integer values. The elements on the left-hand sides 
of (2.18) are all O ( I ? + ~ ~ ) ,  while the right-hand sides consist of sums of products of 
coefficients of lower order. These equations are quite similar to an analogous set for 
the progressive wave as given by Schwartz (1974); however, there the recurrence 
relations were purely algebraic. Equations (2.18), on the other hand, contain time 
derivatives and a special treatment will be required for the suppression of secular terms. 

A recursive calculation soon reveals the nature of the time dependence. Consistently 
with (2.16) we set the first-order solution 

alo = cost. 

Now equations (2.18) with p = 1 and n = 0 give 

/Ilo = sint, ylo = - sint. 

We assume that the surface profile and hence the function z is an even function of time. 
From (2.3) and (2.4) it then follows that W and F are odd functions. Proceeding to 
second order in 6, we find that, with p = 0 and n = 1 in (2.18), 

and 
a,, = - t( 1 + cos 2t), 

yol = sin 2t. 

Let.@A, RgA, andR(!Arepresenttheright-handsidesof (2.18a), (2.18b), and (2.18c), 
respectively. A single non-homogeneous ‘spring’ equation can be found for apn by 
differentiating (2.18b) and adding ( 2 . 1 8 ~ ) .  One obtains 

a& +pap,  = RgA +pRiA. (2.19) 

A particular solution to (2.19) withp = 2 and n = 0 is 

a,, = *( 1 + cos 2t). 

A homogeneous solution is not permitted because its frequency would be an irrational 
multiple of the fundamental and thus would violate the periodicity requirement. 
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Corresponding expressions for yzo and P2, can be obtained from (2.18b) and ( 2 . 1 8 ~ ~ ) .  
These are 

yzo = -*sin 2t, pz0 = 4 sin 2t. 

In  general, a sufficient assumption for the form of the coefficient is 

[&2n+~)l 
2 upn = up& cos ( p  + 2n - 21) t,  

1=0 

and 
t f(2n+~-l)l  

ypn = 2 ypdsin(p+2n-21)t .  
1-0 

( 2 . 2 0 ~ )  

(2.2021) 

(2.20c) 

The square brackets are used here to signify the integer-part function. These forms 
may be inserted on the right-hand sides of the system (2.1 8). After multiplying cosine 
harmonics and sorting, we obtain 

(2.21a) 

(2.21 b )  

(2.21c) 

We have not obtained explicit forms for the #;Al; fortunately they are not needed. 
All that we require is an algorithm for assigning values to these constants. For example, 
the right-hand side of ( 2 . 1 8 ~ )  becomes 

p-1 n [f(2k+j)l[f(2n-2k+p-j-l)I 

3=1 k=O r = O  
I] K(a,  B )  [sin (Q1+ a21 t + sin (Q1- a21 tl, 

m=O 
X I ]  x 

where 

and 
q1 = p - j + 2 n - 2 k - 2 r n ,  q2 = j + 2 k - 2 r ,  

The quadruple sum is performed with the currentvalue of K being added toBiA,, where 
1 = m + r .  Finally the sum is repeated with K being either added to, or subtracted from, 
B!&, 1 = Ip + 2 n  - 2q1 + 2q,l, according to whether (ql - q2) is positive or negative. 

Once the triply subscripted elements in (2.21) have been determined, substitution of 
(2.20) and (2.21) into (2.19) yields an expression 

- ( p  + 2n - 21)2] apnl = ( p  + 2n - 21) RgA, + R(:A1, (2.22) 

from which up,,, is uniquely determined provided, of course, that p + (p + 2n - 21)2. 
ypd and Ppnl can then be found from the algebraic equations (2.18 a )  and (2.18 b)  . 

The restriction on equation (2.22) can be violated when p is a perfect square; that 
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is for p = 0,1,4,9,  .... We will consider each case in turn. For p = 0 and n = 1, 
yOnn = a:,, = 0 and aOnn is found from (2.18 c) algebraically : 

aOnn = R$%. 

When p = 1 and n = 1, terms containing t cost will appear unless 

R12n + R$2n = 0. (2.23) 

These secular terms are unacceptable because they would violate the time-periodicity 
requirement on the solution. Inspection of the right side of ( 2 . 1 8 ~ )  reveals that R\% 
contains a term 

un alo = u, cos t . 
The constant a, does not appear in the equations for any other quantity of 0 ( ~ ~ ~ + l ) ,  
nor is it required at  lower order. Thus un may be determined at  this point by satisfying 
condition (2.23). 

The homogeneous solution alnn cost is still undetermined. Its determination is 
equivalent to the specification of the expansion parameter e.  We choose 6 to be equal 
to half the (dimensionless) peak-to-trough wave height at t = 0. Thus, if y(5, t)  gives the 
vertical co-ordinate of a point on the surface, the crest displacement is 

Q) [ k ( t n + p ) l  
y(O,O) = 2 2 x e p f 2 n a p n k .  

p=On=O k=O 

The y co-ordinate of a trough is 

But 26 = y(0,O) -y(n,  0)) from which it follows that 

and 
@-loo = 1 

n n  
(2.24) 

Equation (2.24) determines the value of alnn once all the other a’s of order ++l are 
known. 

The system (2.18) appears to indicate that up,, &, and ypn can be calculated only 
from elements whose second subscript, r say, is less than or equal to n; however, this is 
not true in general. Let us consider the first ‘resonant’ term that appears when p = 4. 
The element ado contains the term 

a401 cos 2t 

for which p = ( p +  2n- 2Z)2 in the notation of equation (2.22). We first verify that 
2R& + 4R$\ is indeed zero so that no secular term appears at fourth order. If we take 
01401 to be equal to zero we soon find that resonance occurs a t  order eB because 
2SZb + 4HA9 is not zero. We can, however, select a401 so as to induce a zero value at  
(p,n,Z) = (4,1,2).  Similarly, the homogeneous term q12 is selected to suppress the 
secular term at (4,2,3). The next homogeneous term withp = 4 is Its determina- 
tion requires suppression of resonance a t  (4,3,4). This last node, however, is O(elo); this 
calculation therefore requires knowledge of ago3, whose value is specified so as to 
suppress resonance at (9,1,4).  
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FIGURE 2. Order of procedure scheme for a ninth-order solution. 

This process, which may be continued indefinitely, is illustrated schematically in 
figure 2. The coefficient with (p ,  n) values whose nodes contain the same symbol in the 
figure are to be calculated as outlined above in order of increasing total order, p + 2n. 
The overall progression is in the order 

a A b 0 c C d D e  .... 
The dotted lines and capital letters indicate resonance-suppression loops. 

the right-hand side of (2.22) and the preceding homogeneous coefficient 
A careful examination of the recurrence relations reveals a linear relation between 

P'RFL~ +PR% = Kpd + fpap ,  n-1,1-1, 

where (21 + 2n - 21)2 = p. Thus only two passes through each loop are necessary: the 
first to determine the value of Kpnl;  and the second to find final values for the 
coefficient. 

Any secular term for n > 0 can be suppressed by this procedure. If, on the other 
hand, a secular term were to appear for n = 0, i.e. in the first column in figure 2, it 
could not be removed for there are no additional disposable constants in the solution. 
This would be quite serious since it would either invalidate the representation used 
here or cast, doubt on the existence of a time- and space-periodic standing wave. We 

6 F L U  107 
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have been unable to prove that secular terms will not appear in the first column but 
we can offer strong numerical evidence that they will not. 

The recurrence equations (2.18) with n = 0 completely determine a,,, p,,, and yno, 
once the homogeneous constants a,,,, ~ 4 0 1 ,  aW3, . . . are specified. Aht-column compu- 
tation was run to 0(eB1) with randomly selected real values for these constants. The 
right-hand side of (2.22) was found to be zero to double-precision accuracy for all 
possible resonance cases; i.e. at p = 4,9,16, ..., 81 and 1 = *@-pi).  The first-column 
computation is further discussed in the appendix. 

3. Discussion of results 
The algorithm described in the preceding section has been coded in FORTRAN and 

run to O(e25) on a CDC 6400 computer. Double-precision results (29 significant figures) 
for the three arrays apd, /Ipd ,  and ypd required a run time of about 4 minutes. The time 
required for a run of given total order M was roughly proportional to M6.  

Through order €5, the series coefficients can be recognized as rational numbers from 
their decimal expansions. The coefficients up in the transformation equation ( 2 . 1 2 ~ )  are 

a, = - t.2 + gt9 - ( t € 2  - as4,  cos 2t + as4 cos 4t, 

a, = (e - &3 + + $ 2 g ~ 5 )  COB t + ( - f i e 3  + w$) cos 3t + 
a2 = a.2 - &4 + ( 4 ~ 2  - 3 4 )  cos 2t - a . 4  cos 4t, 

cos 5t 

a3 = (i." - 3#-€5) COS t + (#8 - M 5 )  cos 3t - g N S 5  cos 5t, 

a, = WS5 cos t + +#+ cos 3t + %E5 cos 5t. 

a4 = €4 + +3e4 cos 2t + i s 4  cos 4t, 

The frequency parameter has the expansion 

1 1 8 2 7 2  
S = gk - = 1 + ~ ~ ~ - ~ ~ 4 - ~ ~ ~ ~ - 0 * 0 1 0 8 3 9 ~ - 0 * 0 6 3 6 8 3 ~ ~ ~ - 0 * 1 3 4 0 5 0 ~ ~ ~  

0 2  

- 0.238688194- 0.532647e" - 1.24212~"- 2.72405190- 6.0031&22 

- 13.7416~~4- ... . (3.2) 

From (3.1) we can immediately draw an important conclusion: there is no instant of 
time at which the free surface is perfectly flat. It is most nearly flat at t = an nn, 
n = 1,2 , .  ... At these values oft  ( 2 . 1 2 ~ )  becomes 

z = [+ ic4(+-2iS - &-4iS) + O(&), 

which, on the free surface g = 6, gives immediately 

y = €4(3 cos 22 - cos 42) + O(S6). (3-3) 

Penney & Price (1952) have previously determined that the surface is never flat and 
therefore concluded 'that strictly periodic oscillations of finite amplitude cannot be 
generated by impulsive pressures applied to the initially flat surface of water a t  rest'. 
Their solution corresponding to (3.3) would seem to be incorrect; in particular, while 
their result gave 6 as the coefficient of coa 2x in (3.3), the cos 4x term was absent. 
This error was undoubtedly caused by the improper choice of a homogeneous term 
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FIQIJRE 3. Domb-Sykes plots for u ~ , / u , - ~ , , ,  at 1 = 0. 

at the fourth order which gives rise to a secular term at O(s6) (see $2). Since their 
solution was only carried to O(e5),  they were not aware of this fact. 

The total number of transformation coefficients aDn, for a twenty-fifth order solution 
is 1637, far too many to be presented meaningfully. By way of compromise, and since 
the highest wave profile ( t  = 0) for a given value of B is of particular interest, we show 
the coefficients ap,(0) to 0 (€2') in table 1. 

A useful tool for extracting information from a high-order series computation is a 
graphical ratio test used by Domb & Sykes (1957). It is based on the observation that, 
iff is a binomial function, 

( 3 . 4 4  
* - € ) a  if a p O,l, ... , 

(E*-e)ln(e*-e) if a = 0, 1, ..., 
og 

f (8)  = anen = 
n-0 

then 
a, 1 l + a  
an-l e* 

(3.4b) 

is an exact relation. If an arbitrary function F(B) ,  analytic at  E = 0, possesses a 
singularity a t  E* of the type (3.4~) and if the singularity is closer to the origin than any 
other singularity of F, then a plot of the ratio of expansion coefficients versw l / n  will 
possess a straight-line asymptote as indicated by (3.4b). It has not generally been 
realized that (3.4) is valid for complex values of a,, in which case the asymptote will be 
a straight line in (l/n, Re {an/a,-,>, Im {an/an-l}) space. When a large but finite 
number of coeficients are known in a series expansion, the location E* and nature a of 
the limiting singularity can often be found to good accuracy by this graphical method. 
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Typical Domb-Sykes plots formed from subsequences in table 1 are shown in 
figure 3. From (2.12a) and (2.17a), the transformation expansion at t = 0 can be 
written as 

z = y + i {  xapO(e - i ce )p+~2xa  Pl (e-iSE)P+$~ap,(e-i6B)P+ ...}. (3.5) 

The coefficient ratios corresponding to vertical columns in table 1, (apo/ap-l,o), 
(apl/ap-l, (ap2/ap-1,2), and (ap3/ap-l, &, when plotted versus l/p give the ‘curves’ 
shown in the figure. For each set of ratios, the points clearly indicate straight-line 
asymptotes with a vertical intercept, 1/K* say, of about 2-77. The slopes indicate 
approximate a values of 0.50, - 0.46, - 1.49, - 2.57, respectively. In general, a cannot 
be estimated as accurately as K*; it is quite plausible therefore to assume that the 01’s 
should properly be half-integers. Therefore, for lee-ig -K*l Q 1, (3.5) can be replaced 

p = o  p = o  P==O 

by 

where R, is a regiilar function near the singular point and the A’s are constants. Thus 
the function z appears to have an essential singularity at se-i6 = K* = 0-361. If, on 
the other hand, we assume, following Grant (19733), that the wave profile can be 
approximated in some sense by the fist column of table 1, we would expect merely the 
square root singularity. Interestingly, the value of K* which we obtain differs little 
from Grant’s value, e-1 = 0-368. Both the value e-1 and the square-root behaviour can 
be obtained from his result apo(0) = pP-l/p! by considering the limit p -f a0 (see 
appendix). Assuming that the square-root behaviour is correct, it is easy to show that 
the wave profile z(& 0) would have a 90” crest at  E = 0 when E = K*. 

Actually neither the square-root behaviour nor the essential singularity is correct, 
and E e-*c = K* is, in fact, a regular point. By considering the last numbers in each of 
the first few columns, we can show that the quantity in brackets in (3.6) is a square- 
root expansion as well. Let this quantity be 

g(6)  = Ao+A1S+A2P+ ..., 
where 6 = e2a/(K* - ee-ic). If we assume that g(6)  is a binomial function of the type 
(3.4a), it follows that its singularity exponent a is given by 

a =  ( k 2 - 1 ) A k + l / A k - k 2 A k / A k - l ,  k = 1,s’ .... 
( k  + 1, A k + l / A k -  ICAkIAk-1 

(3.7) 

For sufficiently large p ,  the coefficients in table 1 can be accurately estimated from the 
expansions of the ‘model ’ functions suggested by the Domb-Sykes plots of figure 4. Let 

denote these model functions where x = ee-it. Thus 

should be approximately true for largep. From (3.8) we obtain 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

"n Yn Re {zn/zn-d Im W z n - J  
0.3242 0.0 - - 
0-3185 0.9499 0.9820 2.924 
0-6038 0.2971 0.4740 - 0.4778 
0.7617 - 0.5770 0.6370 - 1.269 
0.5699 - 1.448 1.382 - 0.8544 

- 0.4270 - 2.240 1.246 - 0.7787 
- 3.038 -2.811 1.460 - 1.078 
- 8.046 - 1.164 1.618 - 1.114 
- 14.31 7.136 1.617 - 1.121 
- 15.80 27.61 1.654 - 1.104 

5.565 64.80 1.681 - 1.164 
85.77 104.0 1.705 - 1.177 

272.8 78.10 1,735 - 1.192 
570.8 - 192.8 1.747 - 1.206 
774.2 - 1033 1-766 - 1.215 
109.5 - 2 789 1-779 - 1.227 

- 3244 - 5 128 1.790 - 1.233 
- 12210 -5213 1.802 - 1.241 
- 28610 5 803 1.810 - 1.248 
- 44 750 40420 1.819 - 1.254 

- 1.260 
135 800 288 000 1-833 - 1.264 
- 23 230 14110 1.826 

TABLE 2. Coefficients zn and ratios Z,, /Z, , -~ for 6 = 0.3242 and t = 0. 

This ratio may be computed most accurately using the largest values of p for which we 
know apk. From (3.7) we obtain, for k = 1 and 2, the estimate a = 0.50 and 0.49, 
respectively, which strongly suggests that g(6) is of the form R,(C -a)* where R, is 
regular and C is a constant. Thus (3.6) becomes 

for IK*-se-icl .g 1, where R3 and R4 are also regular functions. We conclude that 
z(c, 0; 6 )  is regular near the point in question, that the apparent singularity arises 
because of the particular summation method used, and that any conclusion drawn on 
the basis of the spurious singularity must be discounted. 

Equations (2.12) should properly be considered to be expansions in the parameter 8 

with coefficients which are known polynomials in e-ic and ( ~ ~ ~ ) .  Thus, for example, 

we consider the expansion in the form 

In table 2 we present the coefficients z, to 0(s2l) for a point on the surface corresponding 
to 6 = 0.3242 at t = 0. The first two columns contain the values xn and yn, the real and 
imaginary parts of z,. We notice that neither column exhibits much regularity of 
structure, except that the coefficients increase in magnitude with order and have sign 
changes about every fifth term. Thus a ratio plot of, say, 

z = XZn€n 
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FIGURE 4. Plot of coefficient ratios Re {Z,,/Z,,-~} and Im { Z , , / Z ~ - ~ }  

v e r w  l/n for 6 = 0.3242, t = 0. 
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FIQURE 5. Locus of s*( E), the limiting singularities, for t = 0. 

would reveal nothing about the structure of z.  The result is quite different, however, if 
we consider the ratioof the complex coefficients. The third and final columns of table 2 
contain the values of Re { Z ~ / Z , , - ~ }  and Im { Z ~ / Z , + ~ } .  A great deal of structure is apparent 
past n 2: 10. 

Figure 4 is a graph of the coefficient ratios versus n-l. It shows, in effect, the pro- 
jections of the three-dimensional graph on the planes ( l / n ,  Re { z ~ / z ~ - ~ } ,  0) and 
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( l /n,  0, Im { z ~ / z ~ - ~ } )  plotted on the same set of axes. From the vertical intercepts, the 
singularity location can be accurately estimated as e* = 0.344 + i0.237. The horizontal 
intercept of each asymptote is almost certainly n-l = Q which gives a = 4 + i0 in 
equation (3.4b). 

Similar plots have been made for a number of points on the free surface a t  t = 0. The 
locus of values s*(E) ,  constructed from the results of these plots, is shown in figure 5.  
We note first that the curve has the property that Re {E)  and Im {E}  axes are lines of 
symmetry in the sense that e*( - 5) =3(5) = - ~*(n - 5). This property follows readily 
from ( 2 . 1 2 ~ )  and (3-4b) so long as a is real. Along the solid curve in the figure, the ratio 
plots were unambiguous and clearly indicated a square-root singularity a = 4 at the 
indicated value of e*. Two points are also shown that were calculated for very small 
values of E corresponding to points near the crest on the wave profile. The ratio plots 
for these points were not sufficiently well structured to even estimate the nature of the 
singularity; thus it may or may not be a square root. The plots do however indicate 
a value of Re {e*> of about 0.64, implying that the maximum amplitude/wavelength 
ratio, emax/n, for the standing wave in deep water is 0.204. The dotted lines in the 
figure represent a guess concerning the singularity structure of the e expansion for 161 
very small. We suspect that there are two (or more) singularities in close proximity to 
one another, thus explaining the failure of the ratio plots to yield a well-defined 
asymptote. The nature of the limiting singularity for small is an important question; 
this knowledge would enable one to state conclusively whether the crest is pointed 
and, if so, would specify the included angle. 

It is worthwhile to note in passing that those points lying on the solid line in figure 5 
whose series expansions have singularities at  strictly complex values of e must also 
have a second singularity at the real value emax. Otherwise, it would be possible to 
compute values of z for 8 > em,, by a method of analytic continuation. It might be 
possible to extract information about this second singularity by 'mapping away ' the 
leading singularity. 

While the complex-valued singularities indicated in figure 5 are ' non-physical ', 
they do define the radii of convergence of the E expansions. Thus one can state 
quite unequivocally that the e expansion of the wave profile function at  t = 0 

4590; 4 = 2 z,(E, olen 
n=O 

is not uniformly convergent for e greater than 0.30. Thus wave profiles for e greater than 
this critical value cannot be found by summing the series regardless of how many 
terms are known. It is necessary therefore to introduce a method of analytic continu- 
ation; we will use rational fractions (Pad6 approximants) for this purpose. 

We will give a short heuristic motivation for their use; there is, of course, a sub- 
stantial and rapidly growing body of literature on both the theory and application of 
Pad6 approximants (see Cabannes 1976). If only the first 2 N +  1 coefficients are 
known for some function 

(3.10 a) 

the function f may be equally well approximated by an "IN]  Pad6 approximant of 
the form 

f ( E )  = a,+a,s+ ... +a,,s2"+ ..., N = 1,2, ..., 

b,+b,s+ ... + b , P  
" I N 1 f  = 1 + CIE + . . . + C'\.€N ' (3.10 b)  
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N 
1 
2 
3 
4 
6 
6 
7 
8 
9 

10 

6 = 0.40 
& 
0.5776 + i0.4081 
0.5988 0-3244 
0.5756 0.3457 
0.5779 0.3337 
0.5779 0.3343 
0-5779 0.3342 
0.5800 0.3339 
0.5800 0.3339 
0.5800 0.3339 
0.5800 0.3339 

€ =  

7 

0.6914 . 
0.7101 
0.6841 
0.6542 
0.6588 
0.6556 
0,6536 
0.6641 
0.6539 
0.6538 

0.50 * 
f i0.5062 

0.3000 
0.401 7 
0.3623 
0.3647 
0.3645 
0.3619 
0.3621 
0.3619 
0.3618 

8 = 0-60 
r-- 

0.8286 + i0.5927 
0.7920 0.1696 
0.8343 0.4119 
0.7185 0.3757 
0.7288 0.3778 
0.7267 0.3796 
0.7115 0.3795 
0.7150 0.3782 
0.7125 0.3775 
0.7108 0.3786 

E = 0.65 
& 

0.9059 + i0-6294 
0.8036 0.6219 
0.9191 0.3890 
0.7487 0.3780 
0.7665 0.3769 
0.7628 0.3810 
0.7374 0-3904 
0.7416 0.3804 
0.7376 0.3882 
0.7351 0.3908 

TABLE 3. Pad6 approximants [ N / N ]  z for 6 = 0.3242 and t = 0. 
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FIGURE 6. Surface profiles tat t = 0 from [12/12] tapproximanta. 

where the b, and cj are determined uniquely (‘pathological’ cases excepted) from the a, 
by expanding (3.10b) about E = 0 and equating the resultant power series with (3.10~) 
on a term-by-term basis. The error of the polynomial and the fractional forms are 
formally of the same order; the series, however, will only converge if E lies within a 
circle whose radius is defined by I E *  I, the magnitude of the ‘ closest ’ singular point. The 
sequence of approximants “ I N ]  f, N = 1,2, . . . , will converge to f in a much larger 
domain, in general, and will fail to converge (in practice) only near branch points and 
resulting branch cuts off. Rigorous proofs have been derived for certain classes of 
functions . 

Table 3 shows the convergence of the approximants “ I N ]  Z ( E )  for our representative 
surface point corresponding to 5 = 0.3242 and t = 0. The values of E displayed are 0.4, 
0.5,0-6, and 0.65. From figure 4 we known that the radius of convergence for 5 = 0.3242 
corresponds to E = 10.344 + i0.2371 = 0.418, so the power serieswill converge slowly for 
E = 0.4 and not at all for the other values. At the highest order considered in the table, 
convergence is at  least four places for E = 0-4 and about one part in 4000 for E = 0.5. 
For E = 0.6, the tables converge to perhaps one part in 300 and about one part in 100 
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X 

FIQURE 7. Surface inclination at t = 0. For E = 0.60: 0, [10/10]; 
--- , [12, 121. For E = 0.63: 0, [10/10];--, [12, 121. 
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FIGURE 8. Surface profiles ver8uB time, E = 0.60. 

for B = 0.65. In  light of the estimate made above for B,,,, the E = 0.65 tables may not 
be convergent at all. 

Similar tables were computed for many values of 6 to produce t = 0 wave profiles 
for several values of e. On average, the convergence was slightly better than that of 
table 3. Figure 6 shows three surface profiles corresponding to e = 0.4, 0.5, 0.63. For 
the E = 0.63 case, the profile shown was drawn from the [12/12] approximants. Lower- 

. order fractions agreed, in general, to about 1 yo for y at a given value of x. For the 
cases corresponding to smaller values of B,  the tables converged to at  least graphical 
accuracy. The highest surface profile in the figure has an interesting property. It has 
three inflexion points rather than one. This is illustrated more clearly in figure 7 which 
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shows the surface inclination for the E = 0-6 and 0.63 profiles. In  the former case, the 
magnitude of the inclination attains its maximum value Omax = 32.2", at x 2: 0.33. 
There is a second maximum with 0 = 32.0" at x 2: 1.00. The dashed curve is drawn 
from the [ 12/12] approximant for zE = x6 + iy,. The [ 10/10] approximant is also shown 
and it may be seen that the two are in close agreement. For E = 0.63, both the [10/10] 
and [12/12] approximants indicate Omax is about 39", occurring at x 2: 0.10. While the 
two approximants do not agree on the magnitude of the intervening minimum, they 
each predict a second maximum at x 2: 0.80. 

Figure 8 shows the free surface shape for 8 = 0.60 at various times from t = 0 to t = 
in, the quarter-period value. Notice that the surface is not flat a t  t = in, the maximum 
displacement being about 0.004A at x = an. For in < t < n, the profiles will be left- 
right reflexions of those shown and, for 7r < t < 2n, the surface will merely assume the 
profiles shown, but in reverse order. The shape of the nearly flat profile, at t = in, is 
not well represented by the equation (3.3), which is not surprising in view of the 
relatively large value of E .  

In figure 6 we show a plausible highest wave exhibiting a 45' inclination and a sharp 
crest. While the argument of Penney & Price, indicating a crest with a 90" included 
angle, may be defective,? the curves in figure 6 suggest that this local behaviour is 
quite probable. With the additional assumption that the profile will change very little 
except near the crest as the value of emax is approached, we have indicated a slight 
modification, corresponding to a plausible highest wave, by the dashed curve. The 
curve was drawn so as to conserve mass between it and the E = 0-63 profile. This 
possible highest wave has emax N 0.65, corresponding to a wave-height/length ratio 

Penney & Price argue that the deceleration at the crest cannot exceedgin magnitude. 
The premise of their argument is that a fluid element ' cannot withstand tension ' ; hence 
p 2 0 within the fluid. While this is undoubtedly correct, i t  is possible to demonstrate 
this fact without appealing to physical intuition. From equation (2.5) we observe that 
p satisfies Laplace's equation a t  t = 0 when the fluid is instantaneously at  rest. On the 
free surface we have p = 0, while some distance below the surface the pressure differs 
little from the hydrostatic value, a positive quantity. A function that satisfies Laplace's 
equation will not admit an interior extremum; it follows therefore that p 2 0 within 
the fluid at t = 0. Since p = 0 on the surface, it follows that 

of 0.207. 

n . V p < O  on q = O  a t  t = 0 ,  (3.11) 

where n is an outward normal vector. At the crest, x = 0, (3.11) is equivalent to  
ap/ay < 0. The vertical component of the Euler equation 

av 1 
-+(v .V)v  = -g j - -Vp,  
at P 

(3.12) 

t Their prediction assumes that the pressure p is regular in 8 neighbourhood of the sharp crest 
and can thus be expanded in a Taylor series about this point. Then, by invoking symmetry and 
the fact that p satisfies Laplace's equation at those instants of time when the fluid is at rest, they 
show that the two sides are each inclined at 45' to the vertical. There would not appear to be any 
compelling reason for accepting that the sharp crest is a regular point for p. surely p is singular 
at some points in the physical half-plane lying above the fluid; it is plausible that one or more of 
theae singularities will move down to meet the sharp crest as the highest wave is approached. 



166 L. W .  Schwartz and A .  R. Whitney 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 

E 

FIQURE 9. Crest deceleration at t = 0 and frequency parameter v e r m  wave height. 

when evaluated at t = 0, gives the inequality 

(3.13) 
8.u 
- + g > O  at t = O  
at 

at the crest, thereby agreeing with Penney & Price. 
In  the dimensionless units of 5 2, (3.13) can be written in [-plane variables aa 

V,+SaO at t = O  and t = O ,  (3.14) 

where S is the frequency parameter given by equation (2.10). The criterion (3.14) can 
be used to estimate emax. Figure 9 shows the Pd6-summed results of the 6 series for 
the crest deceleration and the frequency parameter S plotted as functions of E. The 
approximants converged well up to e = 0.62 for both curves. For larger values of 6, 

the highest-order approximant available was used. The intersection of the two curves 
gives a value ofemax between 0.66 and 0.67, essentially consistent with earlier estimates. 
Thus we feel that a value 

A (  = 0.208 
A mex 

should be accurate to within 3 yo. 
No strong argument, other than numerical extrapolation, can be given for a 90" crest 

angle, however. For 6 a 0.5 and t = 0 we have a sufficient number of terms in our 
solution to determine about ten coefficients a,(€) in the expansion 

z = [+ i Z a,e-ijc 
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FIUURE 10. Domb-Sykea plots for atla,-, at t = 0. 

0, E = 0.224; 0, 6 = 0.38'7; 0, E = 0.600. 
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FIGURE 11. Frequency parameter v e r m  wave height ; - - -, &*. 

by computing the a, as converged approximants for specified values of 8. Ratio plots 
for various values of 8 are shown in figure 10. They indicate a square-root singularity 
at values of e-ic which tend to 1 as B is increased. If we assume that a square-root 
singularity also exists for e+ = 1 or g = 0 at B= emax, then 

z N i( 1 - e-")i - i( i t) t ,  
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n n 
arg ( z )  = - - arg (2) = + - 4’  

5-0 + 4 ’  E - 4 -  

thus exhibiting the 90” crest. While we believe this to be correct, we note that 
exactly the same situation occurs for the progressive wave, i.e. a )-power singularity 
is indicated for waves of less than maximum height. The required &power singularity 
corresponding to the 120” crest angle is explained by Grant ( 1 9 7 3 ~ )  as arising from the 
coalescence of two square-root-type singularities. 

Figure 11 shows the frequency parameter, calculated from (3.2) by “ I N ]  approxi- 
mants, plotted versus wave height. The approximants converge to graphical accuracy 
to about E = 0.62. S appears to attain a maximum value of 1.089 near E = E,,,. It has 
recently been shown (Longuet-Higgins & Fox 1978; Schwartz & Vanden-Broeck 1979) 
that the wave speed for steady progressive waves achieves a succession of maximum 
and minimum values as the highest wave is approached. It is possible that S exhibits 
similar behaviour in the present problem. Note that the linear approximation to the 
period of a standing wave in deep water 

is never in error by more than 4.4 yo. The two-term approximation, S = 1 + is 
shown for comparison in the figure. 

Since most of the quantities considered were computed by high-order rational 
fractions, a partially independent check can be made by verifying that equations (2.3)) 
(2.4) and (2.6) are satisfied for various values of 5, t ,  and 6. Each quant’ity appearing 
in these equations was evaluated as a rational fraction for several values of E at t = 0 
and t = fn. Typically, [10/10] or [12/12] fractions satisfied the equations to one part 
in 107, 600, and 300, for E = 0.4, 0.6, and 0.62, respectively. These numbers are 
consistent with the degree of convergence of the “ I N ]  approximants themselves. 

4. Concluding remarks 
An algorithm has been developed for the series solution of time- and space-periodic 

standing waves, By use of a time-dependent conformal map, the problem may be 
solved in a fixed region in the transformed plane. This results in a substantial simpli- 
fication in the algebraic manipulations and makes automatic computation feasible. 

The solution has the property that nth-degree Fourier components of the time and 
space dependence first appear at nth order in the wave amplitude. Thus, as the 
amplitude goes to zero, the solution is simply periodic in space and time. This structure 
is analogous to that assumed by Stokes (Stokes’s hypothesis) for steady progressive 
waves. The possible existence of other families of standing waves with more compli- 
cated structure at leading order in the amplitude has not been excluded, h0wever.t 

t A significant discussion on this point has occurred during the review process for this paper. 
Unlike the steady progressive wave, the periodic standing wave formally allows superposition of 
higher harmonics at leading order. Thus, to the right side of equation (2.16), a linear combination 
of terms of form E ~ , C O S ~ * Z C O S ~ Z ~ ,  n = 2, 3, ..., can be appended. It is our belief, however, that 
the resonance-suppression requirement will force each a, to  be zero. For example, if a, is taken 
to be arbitrary initially with a, = 0 , m  > 2, it can be shown that u2 must also be zero for, if it 
were not, a secular term would be forced at O ( 8 ) .  
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A vital feature of the standing-wave problem is the need to suppress secular terms in 
the time dependence. Such terms would result from incorrect choices of the ‘homo- 
geneous’ solutions when p ,  the index of the space variation, is a perfect square. By 
looking ahead to higher order in the amplitude, the correct value of the constants can 
be found. The procedure is similar, for example, to the ‘method of strained co- 
ordinates’ as applied to the series solution for the nonlinear pendulum. The repre- 
sentation of the solution has been shown to be adequate in the sense that secular terms 
can always be suppressed when the index n, defined in (2.17), is greater than zero. 
When n equals zero we have demonstrated that secular terms cannot appear provided 
p Q 81. No doubt an inductive proof can be devised, by examining the recurrence 
equations, to exclude secular terms, for any p ,  when n = 0. More importantly, our 
high-order series results strongly indicate convergence and hence existence of time- 
and space-periodic standing waves for sufficiently small amplitude. For a rigorous 
proof of existence it would be sufficient to establish upper bounds on the series 
coefficients by manipulating the recurrence equations. The results presented in 
figure 5 indicate that the series solution for the wave profile is uniformly convergent 
when the highest parameter e is less than about 0.30. For greater values the series will 
not converge everywhere in the half-plane Im < 0, but the series in e can be summed 
by the use of Pad6 approximants. 

We have verified the result of Penney & Price (1952) that at no instant of time is 
the surface ever flat and hence that the nonlinear standing wave does not possess any 
true nodes. The deviation from a horizontal surface is, as they predict, fourth order 
in the amplitude but the shape they propose would not appear to be correct. 

The shape of the free surface when the fluid is a t  rest, for waves close to the highest, 
is more complicated than had been previously assumed. In particular for such waves 
we have found two local maxima of surface slope. It is possible that more undulations 
will appear for still higher waves. 

In  an attempt to predict the maximum wave steepness, three different extra- 
polations were used. Apparently because the singularity structure near the crest of 
the highest wave is quite complicated, the three predictions agreed only moderately 
well and suggest a value of amplitude/wavelength between 0.204 and 0.213. The 
experiments of Taylor indicate a result about 10 yo higher than this. The discrepancy 
may be due to the surface tension of the real fluid. We note that surface forces could 
be included in the present analysis without very great additional difficulty; it would 
then no longer be possible for an ideally sharp crest to form and the maximum wave 
probably would be topologically limited as is the corresponding progressive wave. 

For waves somewhat short of the highest, we find a square-root singularity for the 
wave profile series lying above the fluid region in the 5 plane. This singularity moves 
down towards the crest as the amplitude increases. Its presence suggests that the 
limiting wave most likely has a right-angled crest as predicted by Penney & Price; 
however, we feel that the evidence is less than conclusive. 

The bulk of this work was completed while L.W.S. was a Visiting Research Fellow 
in the Department of Naval Architecture at  the Berkeley campus of the University 
of California. He would like to acknowledge their hospitality and thank, in 
particular, Professor John Wehausen for a number of useful discussions. The work of 
A.K.W. was supported, in part, by the Lockheed Independent Research Program. 
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Appendix. On the structure of the 'first column' solution 

(2.18) with n = 0.  If we let 

and 

Grant (19733) gives a system of partial differential equations which is equivalent to 

9 = z a p o x p  

g = z Y p 0 X P ,  

p = l  

p = l  

where x = ee-ic, Grant's equations can be written as 

a s  ag 
2 = x , , ,  

These equations can be shown to have a class of exact solutions. We assume a solution 
of the form 

1 
k* 46 = H(,Uk) ,  g = - - tan k*tH&k) 

where p k  = A,Xkcos kit and the constants A ,  are initially free. Equation (A la) is 
satisfied identically while (A 1 b) yields an equation for H(,Uk) of the form 

P k H  - H -  kPkHH' = 0, 
with the exact solution 

P k  = H e-kH. 

Here the constant of integration has been absorbed in A,. A series representation for 
H b k )  and hence for s(jy, t )  can be obtained from (A 2) by use of Lagrange's formula 
(see Whittaker & Watson 1927). We obtain 

The solution for LF obtained by Grant is (A 3) with k = A ,  = 1. He obtains simply 

pP-l 
apo = - cosp t . 

P! 

Grant's solution fails to suppress resonance in the second column, however, starting 
with his value of aqOl = $ which must be replaced by g .  

The only permissible values of k in (A 3) are perfect squares for the usual reason. 
Inspection of the computed solution for apo reveals that, at  least throughp = 8, 9 can 
be expressed as a multiple power series of the form 

Based on this observation and the preceding discussion, we are led to formulate the 
following unproven conjecture: 
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An analytic function 2F of the variables pl, p,, . . .,,up can be found which satisJies 
( A l )  and hence (2.18) with n = 0. That is 

where I i s  any positive integer and the A,, are real constants. If all but one of the A’s 
are zero, the functional form of 9 is given by (A3). 

The values of the A’s for the standing-wave expansion will be those that suppress 
resonance. In particular, A, = 1 from the definition of E and A, = &,. 
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